最新消息
  • [演講活動]具優異高溫強度之耐火高熵合金的設計與機制探索 Prof. Peter K. Liaw 0616 10-12電機館1F靄雲廳演講
    2025.06.11
主辦單位:電機系、材料系、高熵科技應用中心
演講主題:具優異高溫強度之耐火高熵合金的設計與機制探索
An Introduction and Superior High-Temperature Strength in a Refractory High-Entropy Alloy
演講者:Professor Peter K. Liaw(Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN, USA)
日期:2025 年 6 月 16 日 10:00~12:00
地點:電機館 1 樓靄雲廳(92119)
邀請人:施權峰
演講者學經歷
John Fisher Professor, Ivan Racheff Chair of Excellence, National Alumni Association Distinguished
Service Professor
Education】
PhD, Northwestern University
 Advanced  Structural  Alloys,  including  Bulk-Amorphous,  Nano-Materials,  and  High-Entropy Alloys,  Bulk-Amorphous  and  Nano-Materials  Processing,  Fatigue  and  Fracture  Behavior,Nondestructive  Characterization,  including  In-situ  Neutron  and  Synchrotron  Diffraction  and Thermography Detection, and Theoretical Modeling
【Professional Service】
-Fellow, American Society for Metals; The Minerals, Metals, & Materials Society
Technical Advisor for Journal of Metals (JOM)
-Key Reader for Metallurgical and Materials Transactions
-Chairman  of  the  Flow  and  Fracture  Committee,  American  Society  for  Metals  (ASM),  and  The Minerals, Metals & Materials Society (TMS)
-Chairman and Member of the TMS Committee on Application to Practice, Educator, and Leadership Awards
 內容簡介
An  introduction  of  high-entropy  alloys  will  be  presented.  To  achieve  high  strength  at  elevated temperatures, one hurdle that needs to be overcome is the materials softening due to heat. In the present work, a single-phase body-centered-cubic (bcc) CrMoNbV refractory high-entropy alloy (RHEA) with excellent  high-temperature  strength  was  designed  using  intrinsic  material  characteristics  as  the principles for alloy design. The cause of superior strength at elevated temperatures was studied with in-situ neutron scattering, transmission-electron microscopy, and first-principles calculations. It was revealed  that  large  atomic-size  and  elastic-modulus  mismatches,  elastic  constants  insensitivity  to temperature, and the dominance of non-screw character of dislocations caused by solute pinning are the probable causes of strength retention at elevated temperature in CrMoNbV. This study has provided insight into understanding the materials design for elevated-temperatures applications.
(本活動無供餐)